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Abstract

N
Measurements of ratios of scattered to direct thermal radietion in the visible

region were made on 17 nights during the period from October 1960 to February 1961, at
Oakhurst, New Jersey, between two and three miles west of the ocean shoreline,
Source-to-receiver distances of approximately one and two miles were involved, with
general weather conditions varying from close to two miles visibility, snow-covered
ground, and overcest skies, to clear skies, no snow, and visibility greather than

20 miles.

Results indicate situations where the incirect or scattered radiation is appreciably
greater tharn the direct radiation. Tentative empirical relationships are derived for
2 180°receiver field of view in a hazy atmosphere for some of the cases where no snow
anc cloudless skies exist, and compared with those of several previous investigators
in the field. Results are also presented for cases involving snow-coveted ground
anc or clouds. An eupirical relationship is tentatively developed for the situation
involving only the presence of snow. In addition, some consideration is given to the
multiple-scattering prablem.
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DIRECT AND INDIRECT VISIBLE RADIATION YIELD
FROM A POINT SOURCE UNDER DIFFERENT WEATHER CONDITIUNS

INTRORBUCTION

Transmission of visible light radiation through the earth’s atmosphere is dependent on the
concentration and distribution of maseous constiluents and suspended particles in the atmos-
phere called aerosols. These aerosols are dependent on meteorological conditions, particularly
in the lowest 30,000 feer, or 30 of the atmosphere; 1.e., the troposphere region where continuous
and extensive changes occur in the aerosol content. It is such changes that cause wide and
predominant variations in the scattering effects involved in direct as well as indirvct visible
radiation transmission.

A 1957 AEC publication, entitled "The Eftects of Nuclear Weapons," obtainable through the
Government Printing Office, shows the extent of thermal damage that can occur for different sub-
stances at various distances [rom a nuclear biast. A correlation factor is also included to indi-
cate the effects of the weather in terms of the total transmissivity of the atmosphere, This fac-
tor, however, was determined for very limited weather conditions; namely, good visihility,
cloudless skies, and negligible ground albedo effect, Unclassified reports issued since 1357 by
those engaged in related investigations also indicate a limited view with respect to the ground
albedo and-or cloud albedo factars=.

This report, therefore, attempts to determine the significance of the added ground albedo
and/or cloud-coverage effects und to substantiale some previous results of other investigations-
made in the ahsence of any significant albedo factor. Furthermore, the effects of multiple scat-
tering, almost totally ignored for such measurements in the past, are considered here to some
extent.

The problem of determining dircct versus indirect visihle radiation from a point source under
different weather conditions has hecome increasingly significant in the past 15 years. In addi-
tion to its effect on certain theoretical aspects of radiation transfer in the atmosphere, ii now
has a high degree of practical significance involving thermal radiation damage from nuclear
detonations.

BACKGROUND

The Naval Research Laboratory, Washington, B. C., and the Naval Radiological Defensée
Laboratory, San Francisco, California, have accomplished much in the past decade to show the
relationship between direct and scattered light under various weather conditions and receiver
distances and fields of view at or near ground level, DBuncan! of NRL in 1956-37 extended the
prior work of Stewart and Curcio? of NRL to include a field of view of 50° and also considered
data for transmittances less than 0.1. His results show that Stewart and Curcio’s semiempirical
relationship for relatively clear atmospheres, T3 =T +k(1 — T)1 — ™, holds for k = 0.5
when T > 0.1; and when T < 0.1, k =0.5 = 3.5 (0.1 — T), where T4 = total transmission, T =
collimated transmittance, & = receiver tield of view in radians, and k = ground albedo and space
leakage factor. Stewart and Curcio considered only single-type scattering, both empirically and
theoretically, without regard to source-receiver distance effects. Duncan took account of the
multiple-scattering effect empirically, without regard to sourcue-receiver distance effects.

In 1957, Gibbons™® of NRDL extended the 1.5 nautical mile range of Duncan to 14 miles and
extended receiver fields of view up to 117°. Theorstical calculation. made hy Gibbons®* for &
hazy type of atmosphere und for a 180° receiver field of view shov. . cic e coreelation for the

ratio of scattered to direct light radialion, i.e., H, with those of stewart and Curcio at an optical

path near (.3 and helow; while at value= of 0.9, 1.2, and 3.6, F: s results are lower by factors of
about 1.5, 2, and 12, respectively, -5 shown in Fig. 1. .\ ~omparison of Duncan’s semiempirical




B e T e aasantas e

SCATTERED IN RADIATIOK/DIRECT RADIATION

H (RECEIVER FACING LIGHT SOURCE)

<O

T

T

E

i o
/

5

sk

LEGEND
180° RECEIVER FIELD OF VIEW/WHITE LIGHT
©®  GIBBONS (THENRETICAL)

@gqp GIBBONS (EMPIRICAL, INTERPOLATED-
SAN FRANCISCO SAY AREA)

@y GIBBOWS (EMPIRICAL, INTERPOLATED-
NEVADA DESERT AREA)

{3 STEWART & CURCID {SEMI EMPIRICAL-
CHESAPEAKE BAY AREA'

/A DUNGAM [SEUL EUPIR)CAL-CHESAPEAKE
BAY AREA)

&  AUTHOR'S [EMPIRICAL)

® FIg CPTICAL PATH vs K (FOR SEVERAL (HUESY 12770
J L S : o |-
0.8 .2 LLE 2.1 3.0 3.4

< [OPTICAL FaTvy
-0




formula with that of Gibbons indicates a somewhat closer relationship than that of Stewart and
Curcio for cases where the optical path excecds 2.3. Gibbons® general relationship? shows

_ scattered in radiation _ Te—T

direct radiation T

Ro Bde—(R1YRDeD 4y o :

- e = sin Y cos v dRad"
o77gkoDe” P _: i) © 7 - TJ ' -
o' o 1

(bee Fig. 2

where g = the surface albedo effect, k is a proportionality constant for a specific type of atmos-
phere, Bf+#) is the phase function which, when multiplied by k o, vields the unit volume scat-

£y r2
tering function for a specific scattering medium; « D is the optical path; R = E—-and R, :.D_,_

where r; =distance of the source to the scattering volume element; r, = distance of the scat-
tering volume element to the receiver; D = the dixtance between the source and receiver; ¢ =
angle of incidence of the scattered light on the sensitive receiver; and \J = receiver field of

view divided by 2. The aforementioned geometric factors are indicated in Fig, 2.

As in the case of Stewart and Curcio and also Duncan, the atmosphere is considered as
infinitely homogeneous, and cloud reflectione are not taken into account. Gibbons' derivation
alzo allows for scattering of radiation away from the receiver after once it has been scattered
toward the receiver, i.e., in the case of multiple scattering; it does not consider the scattering
in of radiation once it has heen scattered out, i.e., in the case of single scattering, Gibbons”
also measures the "H" factor for one case of full cloud cover and visibility exceeding 50 miles,
with the source to the receiver distances varying from about 1 to 17 miles.

DISCUSSION
General

The equipment employed in ubtaining the data in this report consisted essentially of the
flashlight arrangement described in USASRDL Technical Report 2152.% The principal modifi-
cation consisted in replacing the ground glass over the photomultiplier aperture with a one-inch-
diameter opal glass, and sandblasting the side facing the incident light. This change brought
about an improved cosine response of the larger angles of incidence and improved the left-to-
right symmetrical response so that a maximum correction factor was involved that did not ex-
ceed 10%, without a filter, and was about 15% with a filter. A General Electric FT 503 {lash
tube was used for three tests instead of the Sylvania 4330, The receiver holder was modified
so that vertical measurements a= well as horizontal plane measurements could he readily made.
Experimental checks in the laboratory indicated that the edge effects had a negligible overall
effect for all the fields of view, except at 45, In this case, a 10% cutoff occurred at a 50°
field of view and a 80% cutoff at a 60° field of view.

Eaxperimental Procedure s

At first occulters of 2-1/2-inch diameter and later those of 8-1/2-inch diameter were em-
ploved at the near site, about 6200 feet from the source, and at the far sitc, approximately
10,000 feet from the source, so that less than a 1/2° field of view was subtended from the
occulter to the receiver-detector element, The amount of scatterei light was measured with the
above-mentioned occulter hlocking out the direct light. The total o direct light, plus the in-
direct light, was measured when the occulter unit was lowered. The difference in the two
measurements then vielded the direct component.

-8
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The sequence of measurements varied twofold, depending on the prevalence of stable or un-
stable weather conditions. In stable weather, mecasurements were generally taken during a com-
plete run so that the total light was sequentially detected for the no-filter and colu:-filter cases
for the 180°, 135°, 90°, and 45 ° fields of view, The scattered light was then sequentially de-
tected in the same order. During an unstable weather situation, the scattered light was meas-
ured immediately after the total-light measurements for a given field of view for the no-filter and
the color-filter. The same pattern was then followed for the ather fields of view,

Ten discrete readings were taken for each total-light value and then averaged, whereas five
readings were taken for each scattered-light value and averaged. Ten readings for each total-
light value permitted a better average because of the rapid fluctuations or scintillations of the
direct-light component resulting from the refractive index changes and turbulence factors in the
atmosphere,

Synchronous measurements hetween the near and far receivers were not always achieved
because of occasional difficulties with the PRC-10 communication sets {walkie-talkies) that
were being used. Under those conditions it was often difficult to obtain the attenuation coeffi-
cient from the relationship

2
Il amo(Di-Da

where 1, and 1, are the received signal intensities, Dy and D, are the respective source-to-
recciver distances, and < is the effective attenuation coefficient between D and T,. Estima-
tion of visual ranges in the field was then made, with a further check being obtained from the
visibility reports at the Evans Signal Laboratory Weather Station ahout three miles south of the
field station. Consideration of the relative sensitivities of ihe receivers at each location
yielded sufficiently accurate attenuation coefficients during svnchroncus measurements. Field
calibrations with a neon-glow-tube unit were made prior to and following the tests. Cloud-cover
amounts and heights were exstimated at the field station and further checked with the weather
station,

During the night of 5 December 1960, the relative angular scattering effects of the aerosols
were measured from about 5 ° to 140° with a nephelometer built hy the Perkin-Elmer Corporation
under a USASRDL contract.

RESULTS

Figure 3 is a block diagram of the receiver equipment. The noise level in the field was
such that under clear skies with visibility greater than 20 miles, the brightness of the full moon,
at about a 50° elevation, vielded a signal of the order of one volt under a maximum amplifier
gain of 1000, Under the same conditions the interpolated signal level would have been more
than 500 volts. Although the noise problem was insignificant, it was found thart the receiver
response to the neon calibrator unit generally varied from 17 to about 5% hefore and after the
tests. During the last part of the test series, the variations hecame greater, making it necessary
to check the photomultiplier voltage continuously. Steps will be taken w find the cause of
these variatijons.

Table 1, from which the pertinent graphs were ohtained, shows the overall results of the
test series. Both Hy and Hy measurements (as defined in Tabie 1) were not always taken
during a night rupn because of cccasional equipment difficulties, and lack of accessibility to
both receiver sites on snow-covered ground. Case 1 from Table 1, with the estimated visibility
between two and four miles, was included as a special case wherein varying amounts of stratus
cloud cover moved in the close vicinityv of the light source so that an intermiitent block of the
direct beam occurred. This siwation, of course, brought about a wide variation in the ratio of

-5
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the indirect to the direct light, i.e., the H2 column.

Figure 1 compares the semiempirically derived relationships for a 180 ° receiver field of
view, in the case of white light, of Stewart and Curcio and of Duncan with that of some of
Gibbons’ interpolated empirical results® and the author’s empirical results, as well as the re-
sults of the theoretical calculations of Gibbons for a hazy atmgephere., The spectral sensitivity
curves in Figs. 4 and 5 denote g broad region from about 3300A to 7000A, with the average
wavelength being close tg 5000A. The average wavelength selected by the other investigators
is in the vicinity of 5600A and is expected to apply also to white light. In addition, a totally :
absorbing ground surface was assumed by the other investigators, giving k a value of 0.5, which
would be somewhat less than in the author’s cases where no surface snow was present. This
would indicate that for a given optical path and field of view, the author’s measurements of H
should be somewhat higher than the others for similar cases of typical hazy atmospheres. This,
however, was not the case for optical paths of less than 0.7 except {or those situations involv-
ing Gibbons’ empirically interpolated data for the Nevada desert area.

It is noteworthy that for optical paths lying between about 0.7 and 1.2, the author’s H values
are appreciably higher than Gibbons’ empirically interpolated data from the Nevada desert area,
and slightly higher than Gibbons’ theoretical values. The large difference among the curves of
Gibbons, Stewart and Curcio, and Duncan at the higher optical-path lengths, i.e., above about
0.7, can be atiributed largely to the provision by Stewart and Curcio and by Duncan for no loss
of scattered light once the scattered light falls within the detector’s field of view. The overall
differences between the empirical curves of the author and Gibbons can be largely attributed to
aerosol size-distribution differences. Such differences could occur, since the latter’s measure-
ments were made over water and the Nevada desert area, while the former’s were taken over land
about three miles west of the Atlantic ocean.

Six and four pertinent points for the cases of clear skies without and with snow on the
ground, respectively, plotted in Fig. 6, tentatiyely determine a limited relationship between H
and the optical path. The following two empirical relations are both derived for a slightly to
moderately hazy atmosphere nnder clear skies, no snow, about 60% bare tree coverage, and
about 40% farm-type soil: (1) H(%) =21.5e%-957 D here 0.6 < ¢ D < 1.14 with a +1%
maximum error, and (2) H(%) = 6.8e2: 77 0D where 0.1 < oD £ 0.6 with a maxirum error of
410%. The situation for clear skies with snow on the ground tentatively reveals a relaticu:
H(Z) = 6.8e2- 77 oD 06< oD < 1.0, with a maximum error of +10%,

It is particularly noteworthy that the slope of the curve for those situations involving the
presence of snow remains relatively unchanged for optical paths of about 0.4 to 1.0, whercas for
situations without snow cover, the slope for optical paths between about 0.6 and 1.1 is less i
steep. It is probable that the steeper slope for the case of snow may be due to the multiple |
reflection processes that become significantly effective as the optical path increases beyond a
certain point. It is interesting to note that lor small optical paths, i.e., less than about 0.6,
the snow alone has a negligible effect on H, whereas a very rapid H increase occurs in the op-
tical path range above 0.6 to about 1.2,

Figure 7 denotes a limited number of results for white light at a 180° field-of-view receiver
where snow and/or clouds were present. From a comparison of Fig. 6 (interpolated) and Fig. T,
it is of particular interest that, in the case where the optical path is about 1.5, the H fucior, in
the presence of snow on the ground and low cloud cover at an'altitude close to 2000 feet, could
be as much as 3-1/2 times as great as for the case with the same optical path but with no snow
and cloud-cover present. This situation is applicabie at the receiver distance of two miles, .
with visibility at about four miles. @
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SCATTERED IN RADIATION/DIRECT RADIATION
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.6 L Va
5k H{%) = 21,2 e°°957°° 0.6<oD <1, 1%
8
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3+
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ATHOSPHERE UNDER CLEAR SKIES AND NEGLIG!IBLE
GROUND ALBEDO
2 {_ [3 AS ABOVE BUT WITH SNC ON THE GROUND
N 1 t 4
T 0.6 i.2 i.8
OPTICAL PATH (o D)
FIG. 6 H vs OPTICAL PATH, LIGHT TO MODERATE HAZY ATMOSPHERE, WITH AND WITHOUT SNOW
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1

Any sufficiently defined trend for deterinining an empirical relation H vs. D for cases of
snow and cloud coverage was not present because of lack of sufficient data. However, a curve
is drawn through the points for the cases in Fig. 7 involving the presence of snow on the
ground, which also reappears in Fig. 8.

Figure 8 shows the values of H vs. the optical path for different spectral regions at 180°
field of view with snow and/or clouds present. This graph, however, was limited to only three
weather situations. Lack of sufficient data in this direction, therefore, did not permit a tenta-
tive empirical relation to be derived. It is, however, interesting to note that H is greater for
the blue region than for the green, and that H for the green is markedly greater than for the red.
This tendency would be applicable for situations wherein the haze particles have a size distri-
bution such that their effective radius is less than 0.5 micron, according to Mie’s theory. This
occurs since the Mie scattering coefficient then reaches a maximum for the blue light and a
minimum for the red light.

A graph involving four weather situations of H'is shown in Fig. 9 where

_scattered radiation, sensitive receiver plane pointing vertically skyward

Hl

direct radiation, sensitive receiver plane pointing directly to the source

It should be noted that situations can occur when the overhead scattered-thermal-radiation
effects can be appreciably greater than the direct radiation effects, as indicated for the cases
where the optical paths are 0.94 and 1.8 for the respective receiver distances of 1-1/6 and 2
miles in the presence of stratocumulus overcast at 2000 to 3000 feet, with snow on the ground.
It is also evident that the Hp (for hlue light) is distinctly greater than Hiy (for white light)
which, in turn, is distinctly greater than Hg (for red light) except for the case where oD =0.286,
with snow present and no effective cloud coverage.

Now two fundamental questions arise: (1) Where, or under what conditions, does multiple
scattering occur in the lower atmosphere? (2) To what extent or degree does it occur? An
attempt to answer these questions in some measure is now made with the application of reports
hy Bugnolo7 and Guess. 3 Bugnolo shows that the multiple-scatter theory for an infinitely homo-
geneous and isotropic scattering medium, with a random distribution of scattering particles in
the medium, is applicable in a given distance D whenever D is greater than 1.7 mean free paths,
The probability that any incident ray is scattered n times in a distance r £ R is shown to be

on R -
Po(r<R) = 7= (J)f r=le™ " dr,
from which it follows that
Py=1—e™D (1)
Py=1~(1+oD)e™ P . (2)
Py = 1-(1+aD)e‘°'D-—@2- e oD, (3)

2
Plots of these three relationships are shown in Fig. 10.

Indications of the extent to which multiple scattering occurs are based on the Guess? report
wherein the diffuse reflection of point source radiation from a civeular, horizontal Lambert

plane onto a small flat receiver positioned in space above the plane is considered. Graphs
and tables for determining the flux of point-source radiation reflected by the Lambert plane,
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PROBABILITY CURVES FOR INCIDENT
RADIATION BEING SCATTERED n TIMES.

IN AN OPTICAL PATH, oD (TAKEN FROM
BUGNOLO, D; "ON THE QUESTION OF

MULTIPLE SCATTERING IN THE TROPOSPHERE")

— e - . ——— —— ——— — — o — — —— — —

1 I

n=|

| 1.64 2
OPTICAL THICKNESS {o D)

FiG. 10  PROBABILITY CURVES FOR SINGLE AND MULTIPLE SCATTERING

-18 -




assuming no intervening atmospheric attenuation, are available foo various Lamb rt disc radii
and spatial positions of the receiver. Calculations of H' werc determined from the relationship

H' = v¥= pac' = constant-(f-{:;),
h

r . .
where o is a function of (_:, A, S and o' = constant[S% + (A1~ 1)2 , E = source intensity,

and p = Lambert plane albedo. Here, r = radius of the Liambert plane; h = height of the source
above the Lambert plane (in the case of cloud cover, with the receiver pointing vertically upward

A
or towards the source in this report, h would be the height below the cloud deck); A1 = '}']'., where
S
A = receiver altitude with respect to the Lambert plane; and Sq =°;]", where S = receiver ground

zero distance as denoted in Fig. 11. Graphs are also available for certain cases where the re-
ceiver is tilted relative to the Lambert plane, Here it is shown by Guess that

constant cE1xa . . . :
Qr = ———-—gf——l--—, but where a is slso a function of the direction cosines of the normal to

h
the receiver.

Figures 12 and 13, showing the relationship between H and H' vs. cloud height for the
goometry involved in these tests, are obtained through multiple interpolations from the Ay, S1
data available from the Guess report, where r,/h is taken as infinity and p as unity. The max-
imum of H ir Fig. 12 occurs when the cloud deck is ahout one-third the detector ground-zero
distance, and the curve for the 10,000-ft. ground-zero detector is appreciably broader in the
vicinity of the peak. The empirical values included in the figure indicate the predominating
effects of aerosol scattering effects, which are not considered in the Guess report. It carn be
surmised that for a very clear atmosphere the contribution to H from the snow reflections is,
for all practical purposes, zero.

The relationship between H' vs. cloud height, as shown in Fig. 13, denotes the peak occur-
ring at a cloud height approximately one-half the detector ground- rero distance, with a particu-
larly broad peak occurring for the 10,000-ft. ground-zero detector. The attenuation factor due
to the presence of aerosol causes appreciably lower empirical H' values.

Employing Fig. 19, where applicable, and Figs, 6, 12, and 13, it is possible to deduce the
albedo effects of snow and/or clouds in the overall scattering effects at the receiving area.’
The following procedure is adopted, therefore, and the following cases considered:

(1) H vs. clear skies with snow on the ground with a single scattering-type optical path
of (oD} 4, empirical. .

(2) B vs. clear skies with no snow on the ground for the same optical path as in (1);
i.e., (oD)a, empirical.

(1) — (2) = (3) H vs. snow on the ground, assuming single type, independent, or inco-
herent scattering processes, i.e., contribution to H from surface snow. |

{4} H vs. (cloud height); with no asrosol attenuation between the snow and cloud cover,
theoretical.

(5) H vs. {cloud height); with snow for an optical path of (cD)A between the snow and
cloud covers, empirical (since there are no appropriate cases of H vs. cloud overcast with no
snow on the ground).

-17-
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(5) ~ (3), subtracting the cffecte of the snow, = (8) albede affect of the cloud deck at a
given height, i.e., 1, with an optical path of (¢ D),, assuming both single type, independent
aerosol scattering in (o D),, and a Lambert-type reflecting cloud boundary.

Subtracting (4) from (8) yields (7), i.e., effects of aerosol scattering alone for (o D) 5.

7
(8): 54—; % 100 = percent contribution of

serosol scatiering between the surface and clouds in a given optical path of (T B

cloud overcast albedo effect at a given height,

And similarly for H':
(9) H' vs. cloud height, no snow, optical path of (¢ D);\.’ empirical.
{10) H' vs. cloud height, with sno'\\, optical path of (o D),, empirical.
(9) — (10) = (11) BH*' contributlion [rom the snow albedo effect alone for an optical path
of (0 D),, empirical,
(12) H' vs. cloud height, no aerosol attenuation in the atmosphere below the cloud deck,
with the clouds acting essentially as a’ Lambert reflector, theoretical.
(i2y — (9) — (13): —H' from sing‘;e scallering processes below the cloud deck; that is,
' theoretjca] 15 reduced by some factor —H'.
(14) : E-l-% 100 = porcent diminution of H*

12) theoretical
effect) as a result of aerosol single, independent scattering processes below the cloud deck.

H

(from the cloud deck albedo

In such cases involving aerosol multiple nonindependent scattering processes, i.e., where
the optical path ¢ D is equal to or greater than 1.64, nonlinear effects present difficulties that
do not permit a simple analysis as above. However, it can be expected that the overall effects
of multiple scattering would bring a further increase in both H and H' as compared to the single
scattering cases.

The case involving an estimated optical path of 1.9, with varving wispy stratus at 400 to
600 feet and an overcast at 1500 to 2000 feel, is taken as the only available situation where the
probability of more than single-type aerosol scatlering (i.e., twofold scattering) is greater than
0.5, as indicated from Fig. 10. Computations are limited to where the receiver is pointing ver-
tically upwards, i.e., H' 1805, because of the variability of the stratus clouds between the
source and receiver.

The results of such computations show that for a cloud base of 2000 feet with an assumed
albedo factor p of 0.7, H' = 18%; and for p = 0.6, H' = 15%. This is rather close to the 14%
empirical value obtained, and is noteworthy in view of the fact that the theoretical value is ap-
plicable for unlimited visibility, and yet it closely corresponds in value for the empirical situ-
ation where the estimated visibility is 3 miles and the optical path, 1.8. The indication here
is that multiple scattering of a twofold type between the source and cloud deck and then be-
tween the cloud deck and receiver has a predominating effect, since the optical thickness is
greater than 1.64. The high H' value for B' 180°,, however, for casc 2 (from Table 1) at an
optical path of 1.6 and 2 to 4 miles visibility, with about a 2000-ft.-high cloud deck, would, in
effect, discount the above conclusions on the grounds that the variable stratus had too much of
an effect on lowering the H' value by its direct blocking effects,

Case 2, with a measured optical path of 1.6 and 2 to 4 miles visibility, is a borderline case
for a 0.5 probability of the occurrence of a twofold type of scattering, With the snow on the
ground as the Liambert plane, and then with the clouds considered separately as the Lambert
plane, theoretical calculations for H indicate that the predominating scattering contributions
are due to effects between a single and twofold type of aerosol forward scattering occurring in

-91 -




the general region between the cloud deck and the snow cover,
L4

The following two conclusions can be drawn frem Fig. 6 concerning the albedo effect ui snow
on the additional contribution to H. Firstly, below an optical path in the vicinity of 0.6 there
seems to be no, or negligible, contribution to H as a result of the presence of snow on the
ground. Secondly, above a 0.6 optical path, the alhedo contribution of the snow seems to in-
crease most rapidly in the optical-path region of ubout 0.8 to 0.9 and less rapidly from about 0.6
to 0.8 and 0.8 to about 1.0; i.e., (figures are approximate)} a 15% increase for an optical path of
0.7, a 20% increase for an optical path of 0.8, a 60% increase for an optical path of 0.9, and an
80% increase for an optical path of 1.0.

In a similar vein, the following conclusions can he drawn from Fig. 12 concerning the albedo
effects of a cloud deck on H, assuming a cloud albedo factor of 0.7 for the stratocumulus and
0.6 for the altocumulus ard altostratus type, and taking into account the negligible contribution
of the snow for optical paths of less than about 0.6, For the case where the optical path is 0.26
with the cloud height in the vicinity of 2500 feet, the H_ . . | value of 46% is lower than the

theoretica; value of about 54%. This may be due to the fact that about an 80% cloud coverage
of the sky was observed, with noticeable breaks in the vicinitv of the source and receiver. In
the case where the optical path is approximately 0.42 with approximately a 2500-ft. cloud height,
the aerosol (that is, hetween the cloud deck and ground) contribution is near 14%. The contri-

aerosol scattering

bution of = 30%. For the case of the optical path of 0.40 with

cloud albedo effect at 2500 feet

about an 8000-ft. cloud height, the aerosol contribution is nehr 14%. The ratio of

aerosol scattering

= 100%. M
cloud albedo effect at §000 fect

For the case of the optical path of 0.258 with ahout a 10,000-ft. cloud height, the aerosol

anerosol scaltering

contribution is near 15%. The ratio of = 150%, For the case of the optical

cloud albedo effect
path of 0.46 and 10,000-ft, cloud height, the aerosal contribution is near 22%. The ratio of

aerosol scattering

= 148%.

cloud albedo effect

For the case of an optical path of 0.33 with about a 15.000-ft. cloud heighti, the aerosol

. . . . . aerusol scatterin
contribution is near 8%. The ratio of & - 33%.
cloud albedo effect

Consideration is now given to those cases where the receiver is pointed vertically upwards
so that its sensitive plane is parallel to the clouds. Similar reasoning as ahove can be emploved
to arrive at the percentage diminution of H' | . . as aresult of aerosol-single-scattering
processes pceurring between the ground and clouds, Such results, however, require empirical
data on H' vs. cloud height, with no snow on the ground. If, however, one assumes that the
effects of the snow [or those cases indicated in Fig, 13 (where the optical path is-less than
0.6) have a negligible contribution towards H', then the percentage diminution of H' \, 00
from the cloud albedo effect as a result ol aerosol single-type-scattering may be determine
for five cases. For example, in the case where the optical path is 0.26 and the cloud height

. L . 2 — 11
is 2500 feet, the diminution of ' is %

x 100 = 58%. Qther cases sl ow the following

diminution:
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Optical Path Cloud Height Fercent Dimin-tion

0.42 - 2,500 feet. 0
0.40 9,000 feet 71
0.28 10,000 feet 53
0.46 10,000 feet 47

Because of the lack of data, no attempt has been made to arrive at an empirical relationship
for the above type of cases.

Figures 14 through 17 present the effects of fields of view of the receiver for various regions
of the spectrum. Insufficient data at this time, however, preclude any attempts for the derivation
of empirical relationships, although it can be siated that for greater optical paths (while the
other factors remain the same) the H factor drops more rapidly with a diminishing field of view.
B is also greater for the smaller wavelengths; i,e,, the blue region shows greater values than
the zreen or red regions.

Figure 18 shows the polar-scattering curves obtained on the night of 5 December 1960, as a
result of three independent measurements taken with a polar nephelometer near ground level in
the vicinity of the source., Such curves obtained with white light indicate the relative volume
scattering effects from about 5° to 140° with respect to the incident direction. This could
permit a theoretical check of the determination of H for various fields of view. In addition, the
slopes of these curves could serve as an indication of relative effective size distribution for a
given aerosol concentration, assuming negligible change in the refractive indices of the prevail-
ing aerosols. Concentration changes can also be noted from the curve displacements versus

time.

.

CONCLUSIONS

Results of the tests, discussed in this reporl, indicate and support the feasibility of obtain-
ing representative empirically established relationships involving the dependence of the ratio
-of scattered to direct visible radiation versus the optical path, under restricted weather condi-
tions. For example, in the case of slightly to moderately hazy atmospheres, under clear skies
and no snow, the relation H (in %) = 21.5 ©%-957 0 D_ where 0.6 < oD < 1.14, and the relation
H(in % =6.8 %7790 where 0.1< D < 0.8, are shown to prevail with a peesible maximum
error of ¥10%. Furthermore, for a similar weather situation, but with snow-covered ground, the
above relation changes to H (in %) = 6.8 €277 7D where 0.8 < ¢ D < 1.0,

Ll
The presence of clouds (although not having a predominant effect in all cases, with one
possible exception, on the overall scattering intensity at the detector) can be responsible for a
significant percentage of the total scattered light.

It is also feasible, in the presence of predominating atmospheric single-scattering processes
and assuming cloud and snow boundaries to behave effectively as Lambert reflectors, to deter-

scattered L. , .
radiation from the intervening aerosols, the

mine the separate contributions to the
direct

cloud deck, and the snow cover.
Much more data are necessary to establish an empirical relationship in ihe vase involving
the presence of clouds and/or snow. In addition, further data are necessary to substantiate

the above-mentioned relationships arrived at empirically under restricted weather situations, as
well as to expand such tests to cover a greater variety of weather patterns.
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The effects of multiple scattering have been considered, siiough only on: @upirical case of
its probable occurrence appeared. Much further work is necessary in this aspect to arrive at any
quantitative conclusions. - Indications are, however, that valucs of H and H' further increase as
the overall effects of multiple scattering predominate, while all other weather factors other than
the optical path remain the same.

Further work is also necessary to establish a quantitative reiationship between the field of
view of the receiver versus the ratio of indirect to direct visible radiation under differing
weather situations,
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